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We show that two quite recent treatments of dislocation-mediated melting transitions result
in the thermal energy associated with the melting temperature, Tm, being expressed as a product
of a volume factor and a combination of elastic constants times a lattice structure-dependent
factor. We further show that the result for the latent heat of fusion Lm obtained in one
of these studies leads to the ratio Lm=G�, where G is the shear modulus at melting and �
the atomic volume, being a constant. Since the ratio of the vacancy formation energy to G�
is also found to be roughly constant, we suggest that the factor G� at melting is crucial
in determining the melting temperature, the latent heat of fusion and the vacancy formation
energy and we comment on the reasons why this should be so.

Keywords: Melting transition; Dislocation model

1. Introduction

Following the pioneering work by [1], there now exists a quantitative statistical
mechanical theory of freezing [2–5]. However, in spite of this, there has been a recent
resurgence of interest in models, and also criteria, which aim to throw light on the
regularities exhibited by the empirical melting temperatures; especially, to date, of
the metallic crystals. The most recent contributions of this kind have been those
of Kleinert and Jiang (KJ) [6], Lawson [7] and Burakovsky and co-workers [8,9].
KJ [6] constructed simple harmonic lattice models to describe the elastic fluctuations
in body-centred cubic (bcc) and face-centred cubic (fcc) lattices and for the excitation
of dislocations and disclinations. The resulting lowest order approximation for the
melting temperatures of some bcc and fcc metallic crystals have been found to be

*Corresponding author. Email: matthai@astro.cf.ac.uk

Physics and Chemistry of Liquids

ISSN 0031-9104 print: ISSN 1029-0451 online � 2006 Taylor & Francis

DOI: 10.1080/00319100500284926

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
4
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



more precise than that obtained by the use of Lindemann’s rule. This is indeed in
agreement with Lawson’s analysis of the law; namely that the errors of between
20 and 30% are characteristic of its use in predicting Tm.

In the approach taken by Burakovsky et al. [8] (BPS), although elasticity conside-
rations are paramount, they differ fundamentally from KJ in that the disinclinations
are neglected. This is serious, since, as stressed by Kleinert [10], the melting transition,
if dislocation-mediated, is only correctly first-order after incorporating disclinations.
However, the simplicity of the approach of BPS allowed them to give a prediction
for the latent heat of fusion, Lm, in relation to Tm and a structure-dependent factor,
lnðz� 1Þ. Here, z is the local coordination number while the logarithmic term is a
characteristic of line-like defects.

The outline of the article is as follows. In the next section, we compare and contrast
existing formulae for Tm, and compare the predictions for Tm and Lm, with currently
available experimental data. Following this, we focus on the empirical regularities
between mono vacancy formation energies E f

1v and the thermal energy, kBTm,
associated with melting for some close-packed crystals. Finally, we give a possible
explanation for the observed macroscopic regularities.

2. Predictions arising from dislocation-mediated theories of melting

Starting with the recent proposal of KJ, we note that their equation (15) for the melting
temperature can be rearranged to take the form

kBTm

a3��
¼

84=3

2�nuð2� � 1Þ
1þ

3�

2��

� �1=3

exp ð�l=3Þ ð1Þ

where nu denotes the number of atoms per unit cell, while a is the near-neighbour
distance. The elastic constants, �, � and � are defined in the usual way by the
continuum elastic energy

Ece ¼ �

Z
dr

X
i 6¼j

u2ij þ �
X
i

u2ii þ
�

2�

X
i

uii

 !2
2
4

3
5 ð2Þ

While KJ tabulate the elastic constants �, � and � for the 18 metal crystals (including
fcc) considered in their study, they do not give values for the least accessible quantity,
l, even though it enters the previous equation through an exponential dependence. The
dimensionless parameter, l, depends on the lattice structure and on the elastic constants.

Taking the elastic constants and Tm given in KJ together with equation (1), we find
that, although l itself does not vary a great deal, lying between 12 and 17, such a
variation is of course significant when appearing in an exponential factor. It is of
greater significance, however, to note the presence of the a3 term in equation (1)
which allows the shape of the KJ formula for Tm to be expressed in terms of the
atomic volume � as

kBTm ¼ �Ceð�, �, �Þ � SKJ ð3Þ
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Here, SKJ is a purely structure-dependent factor including, not only the term expð�l=3Þ,
but also the residual dependence on structure in going from a3 to the volume �.
The factor Ce is simply a combination of the elastic constants.

Turning now to the predictions of BPS, we note that the melting temperature can also
be expressed in the form

kBTm ¼ �G� SB ð4Þ

where, now, G is the shear modulus and SB is once again, a structure-dependent factor.
Thus, both treatments allow us to write the melting temperature as a product
of a volume factor and a combination of elastic constants times a lattice structure-
dependent factor. The result expressed in equation (4) is in a way not very surprising,
as a reduction in the shear modulus is intimately connected with a reduction in the
melting temperature.

In their theory of melting as a dislocation-mediated phase transition, BPS also relate
the latent heat of fusion to the melting temperature. Combining this relationship
together with equation (4) yields the result

Lm

G�
¼ constant ð5Þ

Unlike the relations for the melting temperature, there is now no structure-dependent
quantity in this equation. Thus, equations (4) and (5) may be taken as predictions
arising from dislocation-mediated theories of melting. We now confront these model
predictions with the available experimental data.

The values of Tm, Lm, the atomic volume � and the shear modulus values at both the
melting temperature (Gm) and at room temperature (Gr) are given in table 1.
Also tabulated are the ratios kBTm=G� for both sets of G values. Taking the shear
modulus values at melting, this ratio is seen to be approximately constant for the
different structures; with a value of about 5� 0:4 for most of the fcc elements and
�7� 1 for the bcc structures. Thus, it would appear that a central result coming

Table 1. Shear modulus, atomic volume and heats of formation, melting temperatures and
vacancy formation energies for 13 elements [14–17].

Gr Gm � Lm Tm kBTm=Gm� kBTm=Gr� E f
1v E f

1v=Gm�

Element (GPa) (GPa) ðA3
Þ (eV/atom) (K) ð�10�5

Þ ð�10�5
Þ (eV) ð�10�4

Þ

Al 26.1 14.31 16.61 0.112 934 5.4 3.0 0.67 4.5
Cu 47.7 29.00 11.78 0.136 1357 5.5 3.3 1.28 6.0
Ag 29.8 18.33 17.07 0.118 1235 5.4 3.4 1.11 5.7
Au 28.0 16.05 16.93 0.131 1338 6.8 3.9 0.89 5.2
Ni 85.8 41.77 10.95 0.183 1726 5.2 2.5 1.40 4.9
Pb 8.6 5.75 30.32 0.053 601 4.8 3.2 0.53 4.9
Pd 48.0 37.24 14.71 0.179 1825 4.6 3.6 1.85 5.4
Li 3.85 3.69 21.59 0.048 454 7.9 7.5 0.34 6.8
Na 1.98 1.97 39.33 0.027 371 6.6 6.6
K 0.9 0.81 75.33 0.025 336 7.6 6.8
Rb 0.63 0.60 92.66 0.023 312 7.7 7.4
Cs 0.65 0.39 118.06 0.021 302 9.1 5.4
Nb 37.6 35.00 18.01 0.279 2741 6.0 5.6 2.48 6.3
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from these theories of melting is in general agreement with the experimental
observations within the same degree of accuracy, or better, as the Lindemann rule.
To examine the validity of the second prediction, the variation of the ratio G�=Lm

with atomic number is displayed in figure 1. With the shear modulus values taken at
the melting temperature, this ratio has a range of values which lie in a narrow band,
within about 20% of the mean. It may be noted that when the room temperature
shear modulus values are used, the variation is much more scattered. Thus, it may be
concluded that the prediction that Lm=G� is a constant is correct within the
same degree of accuracy as the melting temperature prediction, providing the values
of G at melting are used.
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Figure 1. Plot of the ratio G�=Lm vs. the atomic number for the 13 elements in table 1 with G
at its (a) melting temperature and (b) the room temperature values. The full curve denotes the
average value and the dashed lines represent the values to within 20% on either side of the average.
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3. Other predictions for the melting temperature

Books on materials science have, over decades, recorded beyond reasonable doubt
an empirical correlation between the thermal energy at melting, kBTm, and the
monovacancy formation energy, E f

1v. Roughly, the rule of thumb used in such
discussions is that E f

1v=kBTm � 10. In contrast to the dislocation-mediated phase
transition at the heart of the present discussion, with clear implications for the
mechanism of melting, point defect correlations have no such underlying mechanism,
as there is no experimental evidence for any major build-up of the (small) concentration
of monovacancies as the melting temperature Tm is approached. Therefore, first
principle discussions of such a correlation between E f

1v and kBTm have had recourse
to a (assumed) force field. As a specific example, Bhatia and March ([11] (BM) have
utilised, for close-packed solids, a pair potential formulation by Minchin et al. [12]
for E f

1v. Although, the BM discussion is most appropriate for solid Ar and Kr,
it does lead to a quite clear cut prediction for the ratio E f

1v=kBTm. This ratio,
they observed, is the sum of two parts, with the first involving the ratio B�=kBTm

where B is the bulk modulus. A refinement of the aforesaid pair potential treatment
by invoking an embedded atom potential led Johnson [13] to predict that for the
close-packed metals, E f

1v correlates better with G� than with B�. The correlation,
resulting from dislocation-mediated theories of melting between kBTm and G�,
through a structure-dependent factor, when combined with Johnson’s work on a
Cu-like model metal yields, for a given structure such as fcc, the relationship
E f
1v=kBTm ¼ constant; which is found to be in fair accord with the experimental data.
A presumably more refined form for this same ratio, but now in terms of other

thermodynamic quantities, and in particular the ratio of the specific heats � of
the liquid near freezing is discussed in the appendix. This results in an equation
relating E f

1v to the factor G�. In particular, it may be expected that E f
1v=G� is nearly

constant. In table 1, we have tabulated this ratio for some of the elements for which
the vacancy formation energy data is readily available. The relative constancy of this
ratio suggests that the vacancy formation energy is also determined by the factor G�.

4. Discussion

The dislocation-mediated melting transition, as advocated in recent studies, leads to the
thermal energy kBTm being written as a product of atomic volume and a combination of
elastic constants, times a factor depending on the lattice structure. This multiplicative
factor appears to be 5� 10�5 for the fcc crystal structures and 7:5� 10�5 for the bcc
structures. In addition, it has been shown that one of the consequences of such theories,
namely, the result that the ratio Lm=G� is roughly a constant, is also approximately
borne out by the experimental evidence. The empirical relationship between the
vacancy formation energy and the melting temperature is manifest in the connection
between E f

1v and the factor G�; the ratio of which is also found to be roughly a
constant. This suggests that the factor G� plays the crucial role in determining
not only the melting properties but also the defect formation energies in elemental
crystals. All the anisotropy of the crystal is manifest in the value of the quantity, G�.

One can understand this by noting that G� is a measure of the energy required
to distort the crystal. We therefore put forward the suggestion that it is this distortion
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that results in the formation of both line defects, such as dislocations (which in turn
lead to melting) and of point defects. The relationship between Lm and G� reinforces
this idea as Lm is a measure of the energy absorbed by the crystal before the shear
modulus drops. Thus, it is reasonable to expect that all three quantities are determined
by the ability of the crystal to withstand a shear force. This, in turn, depends on the
electron–phonon interactions in a crystal.
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Appendix

Relationship between E f
1v and the thermal energy, kBTm, at melting.

One of the authors [18] had earlier related the monovacancy formation energy, E f
1v,

to departures from Joule’s Law. In this appendix, we show how the ratio E f
1v=kBTm can

be related to the atomic volume, � times an elastic constant.
If E is the internal energy and V is the volume, the departure from Joule’s Law,

which states that E is independent of V in the dense liquid resulting from melting a
close-packed crystal like Ar or Cu can be estimated from the pressure, p, via

p ¼ �
@F

@V

� �
T

¼ �
@E

@V

� �
T

þT
@S

@V

� �
T

ðA1Þ
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in the usual thermodynamic notation. Using the Maxwell thermodynamic relation

@S

@V

� �
T

¼
@p

@T

� �
V

ðA2Þ

in equation (A1) then yields

T
@p

@T

� �
V

¼ pþ
@E

@V

� �
T

: ðA3Þ

Employing the well-known formula for the difference of specific heats cp � cV in terms
of the thermal expansion and compressibility, one is led to

cp � cV ¼ �
p

�kBT
þ

1

�kBT

@E

@V

� �
T

� �2
k2BTKT: ðA4Þ

where � is the atomic number density and KT the isothermal compressibility of the
liquid. Recalling that for, say, liquid Ar near its triple point, p��kBT, one is led to
a quantitative expression for the departure from Joule’s Law, namely,

1

�kBT

@E

@V

� �
T

�
ð� � 1ÞðcV=kBÞ

Sð0Þ

� �1=2

, ðA5Þ

where � ¼ cp=cV, and KT has been written in terms of the long wavelength limit S(0)
of the liquid structure factor S(q), using Sð0Þ ¼ �kBTKT. For liquid Ar near its
triple point, � ¼ 2:2, cV=kB ¼ 2:3, Sð0Þ � 0:06, and the RHS of equation (A5) is �7,
confirming the dominance of the term denoting the departure from Joule’s Law
in this specific example.

We next invoke pair potential theory for the internal energy of the liquid:

E ¼
3

2
NkBTþ

N�

2

Z
g� dr ðA6Þ

where g(r) is essentially the Fourier transform of S(q) and �(r) the (assumed)
density-independent pair potential appropriate for Ar, say. From the work of
Minchin et al. [12], one has

E f
1v ¼ �

�

2

Z
g� dr� kBT, ðA7Þ

leading to the result

E f
1v

kBTm
�

ð� � 1ÞðcV=kBÞ

Sð0Þ

� �1=2

, ðA8Þ

Melting transitions in metallic elements 335

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
4
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



where a term involving ð@g=@�Þ has been omitted since it contributes only a few percent

to E f
1v for Ar and Kr. Inserting the aforesaid data for �, etc., for Ar used earlier in

this appendix, one finds that E f
1v=kBTm, in this example, is �7 , in fair accord with

experiment.
In an attempt to transcend pair potential theory, which is appropriate for Ar

as discussed previously, but not for transition metals where glue models are needed,

one of us [19] used Johnson’s embedded atom result to obtain a weaker inequality

E f
1v

kBTm
�

5

3

cV
kB

ð� � 1Þ

�J

1=2 G�

kBTm
, ðA9Þ

where J is approximately constant.
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